Fourth Order Schemes for Time-Harmonic Wave Equations with Discontinuous Coefficients
نویسندگان
چکیده
We consider high order methods for the one-dimensional Helmholtz equation and frequency-Maxwell system. We demand that the scheme be higher order even when the coefficients are discontinuous. We discuss the connection between schemes for the second-order scalar Helmholtz equation and the first-order system for the electromagnetic or acoustic applications. AMS subject classifications: 65N06, 78A48, 78M20
منابع مشابه
A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملHigh Order Compact Finite Difference Schemes for the Helmholtz Equation with Discontinuous Coefficients
In this paper, thirdand fourth-order compact finite difference schemes are proposed for solving Helmholtz equations with discontinuous media along straight interfaces in two space dimensions. To keep the compactness of the finite difference schemes and get global high order schemes, even at the interface where the wave number is discontinuous, the idea of the immersed interface method is employ...
متن کاملHigh Order Finite Difference Methods in Space and Time
Kress, W. 2003. High Order Finite Difference Methods in Space and Time. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 880. 28 pp. Uppsala. ISBN 91-554-5721-5 In this thesis, high order accurate discretization schemes for partial differential equations are investigated. In the first paper, the linearized two-dimensiona...
متن کاملFinite Element, Discontinuous Galerkin, and Finite Difference Evolution Schemes in Spacetime
Numerical schemes for Einstein’s vacuum equation are developed. Einstein’s equation in harmonic gauge is second order symmetric hyperbolic. It is discretized in four-dimensional spacetime by Finite Differences, Finite Elements, and Interior Penalty Discontinuous Galerkin methods, the latter related to Regge calculus. The schemes are split into space and time and new time-stepping schemes for wa...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کامل